Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits.
نویسندگان
چکیده
Administration of nerve growth factor (NGF) to aged or lesioned animals has been shown to reverse the atrophy of basal forebrain cholinergic neurons and ameliorate behavioral deficits. To examine the importance of endogenous NGF in the survival of basal forebrain cholinergic cells and in spatial memory, mice bearing a disruption mutation in one allele of the NGF gene were studied. Heterozygous mutant mice (ngf+/-) have reduced levels of NGF mRNA and protein within the hippocampus and were found to display significant deficits in memory acquisition and retention in the Morris water maze. The behavioral deficits observed in NGF-deficient mice were accompanied by both shrinkage and loss of septal cells expressing cholinergic markers and by a decrease in cholinergic innervation of the hippocampus. Infusions of NGF into the lateral ventricle of adult ngf+/- mice abolished the deficits on the water maze task. Prolonged exposure to NGF may be required to induce cognitive effects, because reversal of the acquisition deficit was seen after long (5 weeks) but not short (3 d) infusion. Although NGF administration did not result in any improvement in the number of septal cells labeled for choline acetyltransferase, this treatment did effectively correct the deficits in both size of cholinergic neurons and density of cholinergic innervation of the hippocampus. These findings demonstrate the importance of endogenous NGF for survival and function of basal forebrain cholinergic neurons and reveal that partial depletion of this trophic factor is associated with measurable deficits in learning and memory.
منابع مشابه
Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy.
The disruption of the nerve growth factor (NGF) gene in transgenic mice leads to a lethal phenotype (Crowley et al., 1994) and hinders the study of NGF functions in the adult. In this study the phenotypic knockout of NGF in adult mice was achieved by expressing transgenic anti-NGF antibodies, under the control of the human cytomegalovirus promoter. In adult mice, antibody levels are 2000-fold h...
متن کاملLesions of the Basal Forebrain Cholinergic System in Mice Disrupt Idiothetic Navigation
Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic)...
متن کاملA cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons.
The rat beta nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into...
متن کاملNerve growth factor receptor is associated with cholinergic neurons of the basal forebrain but not the pontomesencephalon.
Sequential immunohistochemical demonstration of nerve growth factor receptor and cholinergic acetyltransferase on the same tissue section in the rat revealed that approximately 92% of all cholinergic neurons in the basal forebrain possessed that receptor. Only 0.9% of the neurons demonstrating nerve growth factor receptor in the basal nuclear complex lacked the cholinergic synthetic enzyme, and...
متن کاملEx vivo nerve growth factor gene transfer to the basal forebrain in presymptomatic middle-aged rats prevents the development of cholinergic neuron atrophy and cognitive impairment during aging.
Nerve growth factor (NGF) is able to restore spatial learning and reverse forebrain cholinergic neuron atrophy when administered intracerebrally to behaviorally impaired aged rats. In the present study, behaviorally unimpaired, middle-aged rats (14-16 months old) received transplants of ex vivo transduced, clonal NGF-secreting immortalized neural progenitor cells, bilaterally in the nucleus bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 19 شماره
صفحات -
تاریخ انتشار 1997